£ Processor Scheduling algorithms @ExamRadar

www.examradar.com

Now, let's discuss some processor scheduling algorithms again stating that the goal is to select
the most appropriate process in the ready queue. For the sake of simplicity, we will assume that
we have a single I/O server and a single device queue, and we will assume our device queue
always implemented with FIFO method. We will also neglect the switching time between
processors (context switching).

1 First-Come-First-Served (FCFS)

In this algorithm, the process to be selected is the process which requests the processor first. This
is the process whose PCB is at the head of the ready queue. Contrary to its simplicity, its
performance may often be poor compared to other algorithms. FCFS may cause processes with
short processor bursts to wait for a long time. If one

process with a long processor burst gets the processor, all the others will wait for it to release it
and the ready queue will be filled very much. This is called the convoy effect.

Example 1
Consider the following information and draw the timing (Gannt) chart for the processor and
the 1/0 server using FCFS algorithm for processor scheduling.

Process | Arival time 1Mexec [1°1/0 [2%exec [2@10 |37 exec
A 0 4 4 4 4 4
B 2 1 8 = =
C 3 2 1 2 - -
D 7 1 1 1 1 1
A BC D ; A%
v 44 !
cPu| A1 | B1 [Cc1p1] A2 | B2 C2 p4 A3 D3
0 231 7 11 1115 1:1 21 29 30 34 35
o | | A1 | B1 [C1p1] | A2 | ID2] |
0 3) 12 13 14 15 16 19 3 30 31

Processor utilization = (35/35) * 100 = 100 %
Throughput = 4 / 35=0.11

tat, =34 — 0 =34
taly =27 -2=25
tatc =29 - 3 = 26
tatp = 35— 7 = 28

tatayg = (34 + 25 + 26 + 28) / 4 = 28.25
wty = (0—0) + (15— 8) + (30 — 23) = 14
wig = (4 -2) + (19— 13) = 12

wic = (12 = 3) + (27 - 15) = 21

wip = (14 — 7) + (29 — 16) + (34 — 31) = 23

Wiy = (14 + 12+ 21 +23) /4 =17.3

g&&ss
nwunmn
-k o

-h-f\}l

Mo =(0+2+9+7)/4=45

2 Shortest-Process-First (SPF)

In this method, the processor is assigned to the process with the smallest execution (processor
burst) time. This requires the knowledge of execution time. In our examples, it is given as a table
but actually these burst times are not known by the OS. So it makes prediction. One approach
for this prediction is using the previous processor burst times for the processes in the ready
queue and then the algorithm selects the shortest predicted next processor burst time.

Example 2:
Consider the same process table in Example 21 and draw the timing charts of the processor
and I/O assuming SPF is used for processor scheduling. (Assume FCFS for 1/0)

137 ; 1 1
A

CPU | 1 |c1] B1 D1 c2 p2l A2 |p3 B2 | 2
0 3 4 6 14 15 17 18 22 23 Ky
v v vhAY Lt t
o | | A1 [C B1D1 |p? | A2 |
0 4 8 9 14 15 16 18 19 22 26

Processor utilization = (35 /35) * 100 = 100 %
Throughput =4 /35 = 0.11

tata =35-0=35
tatg =31 -2=29
tate =17 -3 =14
tatp =23 -7 =16

tatae = (35 + 29 + 15 + 16) /4 = 23.5
wta = (0 — 0) + (18 — 8) + (31 — 26) = 15
wis = (6 — 2) + (23 — 15) = 12
wic=(4-3)+(15-9)=7

whp = (14 — 7) + (17 — 16) + (22 — 19) = 11

Whaye = (15 + 12+ 7 + 11) /4= 11.25

|
= O

SO
|
W o

s
I

~N oo

G& a5
-I--I'1

Mavc=(0+4+1+7)/4=3

3 Shortest-Remaining-Time-First (SRTF) @E Xam Rad ar

www.examradar.com

The scheduling algorithms we discussed so far are all non-preemptive algorithms. That is,
once a process grabs the processor, it keeps the processor until it terminates or it requests 1/0.
To deal with this problem (if so), preemptive algorithms are developed.

In this type of algorithms, at some time instant, the process being executed may be preempted
to execute

a new selected process. The preemption conditions are up to the algorithm design. SPF
algorithm can be modified to be preemptive. Assume while one process is executing on the
processor, another process arrives.

The new process may have a predicted next processor burst time shorter than what is left of the
currently executing process. If the SPF algorithm is preemptive, the currently executing process
will be preempted from the processor and the new process will start executing. The modified SPF
algorithm is named as Shortest-Remaining-Time-First (SRTF) algorithm.

Example 3
Consider the same process table in Example 21 and draw the timing charts of the processor
and /O assuming SRTF is used for processor scheduling.

I T 1 3
A

CPU| A1 [c1 B1p1ja2] c2 p2ja2p3 A2 B1 | A3 | B2 |

0 3 4 8 7 8 8§ 1 12 13 14 16 23 27 35
vy oAt . t 1

o | [A1 [cip1| b2 [A2 B1] |

0 4 g 910 1213 16 20 23 24 35

Processor utilization = (35 /35) * 100 = 100 %
Throughput =4 /35 =0.11

taty =27 -0=27
tatg = 35-2 =33
tat.=11-3=8
tatp=14-7=7

tatave = (27 +33+8+7)/4=18.75

Wiy =(0—-0)+(8—8)+ (12-9) + (14 - 13) + (23-20)=7
Wiz = (6 —2) + (16 — 7) + (27-24) = 16

Wie = (4 —3)+ (9-9) = 1

Wi =(7=7)+(11=10) + (13- 13) =1

Whae=(7+16+1+1)/4=6.25

g & &
i n nn
- o
|

~N WMo
i uw nomn
o= kO

Haye=(0+4+1+0)/4=125

4 Round-Robin Scheduling (RRS)

In RRS algorithm the ready queue is treated as a FIFO circular queue. The RRS traces the ready
queue allocating the processor to each process for a time interval which is smaller than or equal
to a predefined time called time quantum (slice).

The OS using RRS, takes the first process from the ready queue, sets a timer to interrupt after one
time quantum and gives the processor to that process. If the process has a processor burst time
smaller than the time quantum, then it releases the processor

voluntarily, either by terminating or by issuing an 1/O request. The QS then proceed with the next
process in the ready queue.

On the other hand, if the process has a processor burst time greater than the time quantum, then
the timer will go off after one time quantum expires, and it interrupts (preempts) the current
process and puts its PCB to the end of the ready queue. The performance of RRS depends heavily
on the selected time quantum.

e Time quantum 2 « = RRS becomes FCFS

e Time quantum - 0 = RRS becomes processor sharing (It acts as if each of the n
processes has its own processor running at processor speed divided by n)

For an optimum time quantum, it can be selected to be greater than 80 % of processor bursts
and to be greater than the context switching time.

Example 4
Consider the following information and draw the timing chart for the processor and the I/O
server using RRS algorithm with time quantum of 3 for processor scheduling.

13 3 1 1 1%

CPURT B1_ |c1 Ap1 picz B1 A2 2Bz AD3B2 A3 B2 A3
3 6 8 9 5 1 32

0 213 15 17 20 21 24 25 28 2 % 35
) L T S 2 S I

Vo | C1A1 o1 B1] P2 A2 | |

0 8 9 13 14 17 18 21 2 25 2 3

Processor utilization = (35/ 35) * 100 = 100 %
Throughput =4 / 35

tata=35-0=235
tatg =34 —2=32
tate = 15 — 3 =12
tatp =26 -7 =19

tatave = (35 + 32 + 12+ 19) /4 =245

Wiy = (0 - 0) + (8 = 3) + (17 - 13) + (24 — 20) + (29 - 29) + (34 — 32) = 15
Wig = (3 —2) + (9 - 6) + (15-12) + (21 — 18) + (26 — 24) + (32— 29) = 15
Wic=(6-3)+(13-9)=7

Wlp = (12— 7) + (20 — 14) + (25 - 22) =14

wtpw'{3=|:15+12+?+11]1’4=11.25

nm,=0-0=0
Mg=36-2=1
Mfc=6-3=3
Mp=12-7=5

Mavg=(0+1+3+5)/4=225

FCFS SPF SRT RR
tatau, 28.25 235 18.75 24 .5
| Whawg 16.5 10.5 6.25 12.25
| rtavg 4.5 3 1.25 2.25
Easy to implement Mot possible to Not possible to Implementable, rtmax
know next CPU know next CPU is important for
burst exactly, it can | burst exactly, it can | interactive systems
only be guessed only be guessed

5 Priority Scheduling

In this type of algorithms a priority is associated with each process and the processor is

given to the process with the highest priority. Equal priority processes are scheduled with
FCFS method.

To illustrate, SPF is a special case of priority scheduling algorithm where

Priority(i) = 1/ next processor burst time of process i Priorities can be fixed externally or they may
be calculated by the OS from time to time.

Externally, if all users have to code time limits and maximum memory for their programs,
priorities are known before execution. Internally, a next processor burst time prediction such
as that of SPF can be used to determine priorities dynamically.

A priority scheduling algorithm can leave some low-priority processes in the ready queue
indefinitely. If the system is heavily loaded, it is a great probability that there is a higherpriority
process to grab the processor. This is called the starvation problem. One solution for

the starvation problem might be to gradually increase the priority of processes that stay in

the system for a long time.

Example 2.5

Following may be used as a priority defining function:

Priority (n) = 10 + tyow — ts(n) — tr(n) — cpu(n)

where
ts(n) :the time process n is submitted to the system
tr(n) : the time process n entered to the ready queue last time
cpu(n) : next processor burst length of process n

tow . current time
E@ExamRadar

www.examradar.com

