

Digital Electronics Study Notes

Number system: the system used to count discrete units is called number system

Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As per the number of symbols its base or radix is 10

Binary number system: the number system that contains only two distinguished symbols that is 0 and 1 is called binary number system. its base or radix is 2

Hexadecimal number system: the number system that contains 16 distinguished symbols that is 0-9 and A,B,C,D,E,F is called hexadecimal number system. It's base or radix is 16.

Conversion from binary number to decimal number is done as given below $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 8 + 0 + 2 + 1 = 27_{10}$

Conversion from hexadecimal to decimal number is done as given below $(A6B)_{16} = A \times 16^2 + 6 \times 16^1 + B \times 16^0$ $= 10 \times 256 + 6 \times 16 + 11 \times 1 = 2460 + 96 + 11 = 2667_{10}$

Conversion from decimal number to binary number is known as given below

 $25_{10} = 11001_2$

Conversion from decimal number to hexadecimal number is done as shown below

 $2742_{10} = AB6_{16}$

Binary coded decimal system: it is another commonly used number system which is used in the field of digital electronics. in this case which digit of the decimal number is represented by 4 bit binary number example:

 $359_{10} = 0011 \ 0101 \ 1001 \ (BCD)$ Where $3_{10} = 0011_2$; $5_{10} = 0101_2$; $9_{10} = 1001_2$;

The ASCII code: ASCII means American standard code for information interchange. is an alphanumeric code every numerals, letters and symbols of the board or printer is equipped with an ASCII code

Logic Gates: an electronic circuit which may have one, 2 or more input signals but only one output signal is called logic Gate truth table: a tabular listing of all possible combination of inputs, for a logic Gate and the resultant output for each combination encoder truth table

OR Gate: it is logic Gate which has Low output when no input is high but the output is high when any or all inputs are high

AND Gate: it is logic Gate which is high output only when all the inputs are high what output is low when any are all the inputs are low.

The Inverter or NOT GATE: what is logic Gate which is higher output when the input is low and output is low when the input is high, this Gate has only one input

NAND Gate: it is logic Gate which is low output when all the inputs are high but output is high when any or all inputs are low.

NOR Gate: it is the logic Gate which has high output window input is high but the output is low when any or all inputs are high.

Exclusive OR -XOR Gate: It is a logic Gate which is higher output when both the inputs are identical that is either both are high for both are low

Exclusive NOR -XNOR Gate: it is a logic Gate which has high output when both the inputs are identical that is either both are high or both are low

Boolean Algebra: the mathematical operation by which various input variables, output variables and Boolean operations are interrelated.

Boolean equations a simplified by applying various theorems **De Morgan's theorem:**

First theorem: it states that the component of a sum equals the product of the components. That is $\overline{A + B} = \overline{A}$. \overline{B}

Second theorem: it states that complement of a product equals the sum of the components that is $\overline{AB} = \overline{A} + \overline{B}$

Karnaugh map: it is a method of simplifying Boolean functions or logic circuits a systematic mathematical way.

Pair: Karnaugh map that contains adjacent 1s horizontally or vertically is called pair.

Quad: when four adjacent 1s a grouped horizontally, vertically or in a square, the group so formed is called a quad

Octet: when 8 adjacent 1s are grouped horizontally or vertically, the group so formed is called an octet.

Redundant groups: group whose 1s are all overlapped by other groups is called redundant group

NAND or NOR Universal gates: these are called Universal Gates because this Gates can be used in place of all other Gates that is NOT, AND, OR, XOR etc

Binary addition: following rules are employed by adding binary numbers

- 0 + 0 equal to zero 0 + 1 equal to 1
- 1 + 0 equal to 1
- 1 + 1 equal to 10
- 1 + 1 + 1 equal to 11

Half adder: logic circuit which is used to add two binary bits is called a half adder. The output of the half adder is sum and carry. The Boolean expression and truth table of these outputs are:

 $Sum = A \bigoplus B$

Carry = AB

INPUTS		OUTPUTS		
Α	В	SUM	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Full adder: a logic circuit which is used to add 3 binary bits is called a full adder. It has two outputs sum and carry. The Boolean expressions and truth table of these outputs are

 $Sum = A \oplus B \oplus C$

Carry = AB + AC + BC

INPUT			OUPUT	
Α	В	С	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Complete binary adder: half adders and full adders are usually combined to add longer binary numbers.

Encoder: encoder is a device which converts the language of the people to the language of the machine

Decoder: Decoder converts the machine language to the people language

Flip flop: bistable multivibrator is also known as flip flop.

Rs flip flop: in Rs flip flop has two inputs namely reset and set accordingly it is known as Rs flip flop.

Clocked the Rs flip flop: to an Rs flip flop, when third input clock is added, the flip flop is known as clocked Rs flip flop.

D flip flop: in Rs flip flop which delays the Digital Signal by the duration of one clock cycle is called a D flip flop.

Edge triggered D flip flop: it is the most common type of D flip flop. it samples the bit or data at a unique instant.

JK flip flop: Universal flip flop, J and K are called control inputs because they determine what the flip flop does when a positive clock edge arrives.

Register: a group of memory elements that work together as a unit is called a resistor

Buffer register: buffer register is the simplest kind of register. it is used only to store a digital word.

Shift register: shift register is an array of flip flops design to store and shift the data.

Counters: counter is a register capable of counting the number of clock pulses that have arrived at its clock input.

Ripple counter: when the output of one flip flop drives another, we call the counter as a ripple counter or an asynchronous counter.

