Downloaded from www.examradar.com

All the Multiple Choice Question and Answer (MCQs) have been compiled from the books of Data Communication and Networking by The well known author behrouz A forouzan.

This Data Communication and Networking – **Error Detection and Correction** multiple choice (MCQ) based Questions and Answers PDF cover the below lists of topics.

- 1. Single-bit error or a burst error Multiple Choice Question and Answer.
- 2. Redundancy methods, parity check, cyclic redundancy checks (CRC), and checksum Multiple Choice Question and Answer.
- 3. Hamming code Multiple Choice Question and Answer.

Practice now to sharpen your concept.

- 1. Which error detection method uses one's complement arithmetic?
 - A. Simple parity check
 - B. Two-dimensional parity check
 - C.CRC
 - D. Checksum
- 2. Which error detection method consists of just one redundant bit per data unit?
 - A. Simple parity check
 - B. Two-dimensional parity check
 - C.CRC
 - D. Checksum
- 3. In cyclic redundancy checking, what is the CRC?

$Downloaded\ from\ \underline{www.examradar.com}$

	A. The divisor B. The quotient
	C. The dividend
	D. The remainder
1	In cyclic redundancy checking, the divisor is the
	In cyclic redundancy checking, the divisor is the RC
	A. The same size as
	B. one bit less than
	C. one bit more than D. none of the above
	D. Hone of the above
5.	A burst error means that two or more bits in the data unit
h	ave changed.
	A. double-bit B. burst
	C. single-bit
	D. none of the above
6	In arror correction the receiver corrects arrors
	In error correction, the receiver corrects errors ithout requesting retransmission.
	A. backward
	B. onward
	C. forward D. none of the above
	D. Hone of the above
7.	In error correction, the receiver asks the sender
tc	send the data again.
	A. backward B. retransmission
	C. forward

D. none of the above

8.	We can divide coding schem andcoding. A. block; linear B. linear; nonlinear C. block; convolution D. none of the above	es into two broad categories:
9.	In modulo-2 arithmetic,A. addition and multiplication B. addition and division C. addition and subtraction D. none of the above	give the same results.
	D. In modulo-2 arithmetic, we understand the subtraction. A. XOR	use the operation for

C. AND D. none of the above

B. OR

Answer key for MCQ SET- 1	
Q-1	Correct Answer :Checksum
Q-2	Correct Answer :Simple parity check
Q-3	Correct Answer :The remainder
Q-4	Correct Answer :one bit more than
Q-5	Correct Answer :burst
Q-6	Correct Answer :forward

Q-7	Correct Answer :retransmission
Q-8	Correct Answer :block; convolution
Q-9	Correct Answer :addition and subtraction
Q-10	Correct Answer :XOR

Error Detection and Correction multiple choice questions and answers MCQ Set-2

	· · · · · · · · · · · · · · · · · · ·	
1. ln	coding, we divide our message into blocks, ea	ach
of k bits,	, called .	
•	ck; blockwords	
B. linea	ear; datawords	
	ck; datawords	
	ne of the above	
k + r. T l A. data B. block C. code	dd r redundant bits to each block to make the lenger The resulting n-bit blocks are called awords ckwords lewords lewords are of the above	gth n

- 3. The _____ between two words is the number of differences between corresponding bits
 - A. Hamming code
 - B. Hamming distance
 - C. Hamming rule
 - D. none of the above

$Downloaded\ from\ \underline{www.examradar.com}$

4. To guarantee the detection of up to 5 errors in all cases, the minimum Hamming distance in a block code must be	
A. 5 B. 6 C. 11 D. none of the above	
5. To guarantee correction of up to 5 errors in all cases, the minimum Hamming distance in a block code must be	
A. 5 B. 6 C. 11 D. none of the above	
6. In a linear block code, the of any two valid codewords creates another valid codeword A. XORing B. ORing C. ANDing D. none of the above	
7. A simple parity-check code can detect errors A. an even-number of B. two C. no errors D. an odd-number of	

- 8. _____codes are special linear block codes with one extra property. If a codeword is rotated, the result is another codeword
 - A. Non-linear
 - B. Convolution
 - C. Cyclic
 - D. none of the above
- 9. The _____of errors is more difficult than the _____
 - A. correction; detection
 - B. detection: correction
 - C. creation; correction
 - D. creation; detection
- 10. In modulo-11 arithmetic, we use only the integers in the range _____, inclusive
 - A. 1 to 10
 - B. 1 to 11
 - C.0 to 10
 - D. none of the above

Answer key for MCQ SET- 2	
Q-1	Correct Answer :block; datawords
Q-2	Correct Answer :codewords
Q-3	Correct Answer :Hamming distance
Q-4	Correct Answer :6
Q-5	Correct Answer :11
Q-6	Correct Answer :XORing
Q-7	Correct Answer :an odd-number of
Q-8	Correct Answer : Cyclic

Q-9	Correct Answer :correction; detection
Q-10	Correct Answer :0 to 10

Error Detection and Correction multiple choice questions and	
answers MCQ Set-3	
1. In modulo-2 arithmetic, we use only A. 1 and 2 B. 0 and 2 C. 0 and 1 D. none of the above	
2. Adding 1 and 1 in modulo-2 arithmetic results in	
A. 1 B. 2 C. 0 D. none of the above	
3. In block coding, if k =2 and n =3, we have invalid codewords A. 8 B. 4 C. 2 D. none of the above	
4. The Hamming distance between equal codewords is A. 1 B. n	

$Downloaded\ from\ \underline{www.examradar.com}$

C. D.	0 none of the above
A. B. C.	0
betw A. B. C.	3
corre error A. B. C.	3 4
poly A. B. C.	ne of a polynomial is the highest power in the nomial range degree power none of the above

9. The divisor in a cyclic code is normally called the

- A. degree
- B. generator
- C. redundancy
- D. none of the above
- 10. A generator that contains a factor of ____ can detect all odd-numbered errors.
 - A. x
 - B.x + 1
 - C. 1
 - D. none of the above

Answer key for MCQ SET- 3	
Q-1	Correct Answer :0 and 1
Q-2	Correct Answer :0
Q-3	Correct Answer :4
Q-4	Correct Answer :0
Q-5	Correct Answer :2
Q-6	Correct Answer :5
Q-7	Correct Answer :3
Q-8	Correct Answer :degree
Q-9	Correct Answer :generator
Q-10	Correct Answer :x + 1